China Best Sales Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling

Product Description

Steel Material Rigid Shaft Flexible Spring Shaft Snake Grid Coupling

Description:

It is a kind of metal elastic variable stiffness coupling with advanced structure ,which transmits torque by serpentine spring plate embedded in the tooth groove of 2 half couplings ,mainly composed of 2 half couplings,two half covers,two sealing rings and serpentine spring plate.

 

Feature

1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general    machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle

2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.

3.Simple structure, convenient assembly and disassembly, long service life.

4.Damping effect is good to avoid the resonance.

Details


 

Basic Parameter

 

Model Nominal Speed Y,Z Bore L L2 D C KG    
Torque r/min d1,d2 J Grease
Nm   Max Min KG.M2 Kg
JS1 45 4500 28 18 47 66 95 3 1.91 0.00141 0.5712
JS2 140 35 22 47 68 105 2.59 0.057123 0.0408
JS3 224 42 25 50 70 115 3.36 0.00327 0.0544
JS4 400 50 32 60 80 130 5.45 0.00727 0.068
JS5 630 4350 56 40 63 92 150 7.26 0.00119 0.0862
JS6 900 4125 65 40 76 95 160 10.44 0.0185 0.113
JS7 1800 3600 80 55 89 116 190 17.7 0.571 0.172
JS8 3150 95 65 98 122 210 25.42 0.0787 0.254
JS9 5600 2440 110 75 120 155 250 5 42.22 0.178 0.426
JS10 8000 2250 120 85 127 162 270 54.45 0.27 0.505
JS11 12500 2571 140 90 149 192 310 6 81.27 0.514 0.735
JS12 18000 1800 170 110 162 195 346 121 0.989 0.908
JS13 25000 1650 200 120 184 201 384 178 1.85 1.135
JS14 35500 1500 200 140 183 271 450 234.26 3.49 1.952
JS15 50000 1350 240 160 198 279 500 316.89 5.82 2.815
JS16 63000 1225 280 180 216 304 566 6 448.1 10.4 3.496
JS17 90000 1100 300 200 239 322 630 619.71 18.3 3.76
JS18 125000 1050 320 240 260 356 675 776.34 26.1 4.4
JS19 160000 900 360 280 280 355 756 1058.27 43.5 5.63
JS20 224000 820 380 300 305 432 845 13 1425.56 75.5 10.53
JS21 315000 730 420 320 325 490 920 1786.49 113 16.07
JS22 400000 680 450 340 345 546 1000 2268.64 175 24.06
JS23 500000 630 480 360 368 648 1087 2950.82 339 33.82
JS24 630000 580 460 400 401 698 1180 3936.3 524 50.17
JS25 800000 540 500 420 432 762 1260 4686.19 711 67.24

 

Production workshop

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Can Rigid Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, rigid couplings can be used in both horizontal and vertical shaft arrangements. Rigid couplings are designed to provide a solid, non-flexible connection between two shafts, making them suitable for various types of shaft orientations.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the two shafts are positioned parallel to the ground or at a slight incline. Rigid couplings are commonly used in horizontal setups as they efficiently transmit torque and maintain precise alignment between the shafts. The horizontal orientation allows gravity to aid in keeping the coupling elements securely in place.

Vertical Shaft Arrangements: In vertical shaft arrangements, the two shafts are positioned vertically, with one shaft above the other. This type of setup is often found in applications such as pumps, compressors, and some gearboxes. Rigid couplings can also be used in vertical shaft arrangements, but additional considerations must be taken into account:

  • Keyless Design: To accommodate the vertical orientation, some rigid couplings have a keyless design. Traditional keyed couplings may experience issues with keyway shear due to the force of gravity on the key, especially in overhung load situations.
  • Set Screw Tightening: When installing rigid couplings in vertical shaft arrangements, set screws must be tightened securely to prevent any axial movement during operation. Locking compound can also be used to provide additional security.
  • Thrust Load Considerations: Vertical shaft arrangements may generate thrust loads due to the weight of the equipment and components. Rigid couplings should be chosen or designed to handle these thrust loads to prevent axial displacement of the shafts.

It’s essential to select a rigid coupling that is suitable for the specific shaft orientation and operating conditions. Proper installation and alignment are critical for both horizontal and vertical shaft arrangements to ensure the rigid coupling’s optimal performance and reliability.

rigid coupling

Factors to Consider When Choosing a Rigid Coupling for a Specific System

Choosing the right rigid coupling for a specific system is crucial to ensure proper functionality and reliable performance. Several factors should be considered when making this decision:

1. Shaft Size and Compatibility: The most fundamental factor is ensuring that the rigid coupling is compatible with the shaft sizes of the connected components. The coupling should have the appropriate bore size and keyway dimensions to fit securely onto the shafts.

2. Operating Torque: Consider the torque requirements of the application. The rigid coupling should have a torque rating that exceeds the maximum torque expected during operation to prevent failures and ensure safety.

3. Speed: Determine the rotational speed (RPM) of the connected shafts. Rigid couplings have maximum RPM limits, and the selected coupling should be capable of handling the system’s operating speed.

4. Misalignment Tolerance: Assess the potential misalignment between the shafts. Rigid couplings provide no flexibility, so the system must have minimal misalignment to prevent excessive forces on the components.

5. Temperature and Environment: Consider the operating temperature range and the environment where the coupling will be used. Ensure the chosen material can withstand the temperature and any corrosive or harsh conditions present.

6. Space Limitations: Evaluate the available space for the coupling. Rigid couplings have a compact design, but ensure that there is enough clearance for installation and maintenance.

7. Backlash and Torsional Stiffness: In some precision systems, backlash must be minimized to maintain accurate positioning. Additionally, the torsional stiffness of the coupling can impact system response and stability.

8. Keyway or Keyless Design: Decide between a coupling with a keyway or a keyless design based on the specific application requirements and ease of installation.

9. Material Selection: Consider the material properties of the rigid coupling. Common materials include steel, stainless steel, and aluminum, each with its own advantages and limitations.

10. Maintenance: Determine the maintenance requirements of the coupling. Some couplings may need periodic lubrication or inspections, while others may be maintenance-free.

11. Cost: While cost should not be the sole consideration, it is essential to evaluate the cost-effectiveness of the coupling, taking into account its performance and longevity.

By carefully considering these factors, you can select the most suitable rigid coupling for your specific system, ensuring optimal performance, and longevity of your mechanical setup.

rigid coupling

Materials Used in Manufacturing Rigid Couplings:

Rigid couplings are designed to provide a strong and durable connection between two shafts, and they are commonly made from a variety of materials to suit different applications. The choice of material depends on factors such as the application’s environment, load capacity, and cost considerations. Some common materials used in manufacturing rigid couplings include:

  • 1. Steel: Steel is one of the most widely used materials for rigid couplings. It offers excellent strength, durability, and resistance to wear. Steel couplings are suitable for a wide range of applications, including industrial machinery, automotive systems, and power transmission.
  • 2. Stainless Steel: Stainless steel couplings are used in applications where corrosion resistance is crucial. They are well-suited for environments with high humidity, moisture, or exposure to chemicals. Stainless steel couplings are commonly used in food processing, pharmaceuticals, marine, and outdoor applications.
  • 3. Aluminum: Aluminum couplings are known for their lightweight and corrosion-resistant properties. They are often used in applications where weight reduction is essential, such as aerospace and automotive industries.
  • 4. Brass: Brass couplings offer good corrosion resistance and are commonly used in plumbing and water-related applications.
  • 5. Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications and machinery.
  • 6. Bronze: Bronze couplings are known for their excellent wear resistance and are often used in applications involving heavy loads and low speeds.
  • 7. Plastics: Some rigid couplings are made from various plastics, such as nylon or Delrin. Plastic couplings are lightweight, non-conductive, and suitable for applications where electrical insulation is required.

It’s essential to consider the specific requirements of the application, including factors like load capacity, operating environment, and cost, when choosing the appropriate material for a rigid coupling. The right material selection ensures that the coupling can withstand the forces and conditions it will encounter, resulting in a reliable and long-lasting connection between the shafts.

China Best Sales Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling  China Best Sales Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling
editor by CX 2024-04-04

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *