China best Grooved Rigid Coupling Used in Fire Protection FM / UL Listed Epoxy Painting

Product Description

Features:
Code:XGQT01
Size: 1”-12”(DN25-DN300)
Material: Ductile iron ASTM A536, 65-45-12
Dimension: ISO6182,AWWA C606,GB 5135.11
Connection:ASME B36.10,ASTM A53-A53M,ISO 4200
Thread: If have ISO 7-1,BS 21,BSPT, NPT,ASME B1.20.1
Pressure Rating: 175PSI-500PSI
Surface Treatment: Red Painting,Epoxy Coating ,Hot-Dip Galvanized,Electroplated
Bolt & nut: ASTM A449/ CLASS 8.8/ ISO 898
Gasket: EPDM, Nitrile, Silicone rubber, etc.
Certificate: UL Listed / FM Approved 
Application: Fire Protection,Waterworks,HVAC,Plumbing,GAS,Irrigation,or other piping systems 

Nominal
  Size
mm/in
Pipe O.D
mm/in
Working
Pressure
PSI/MPa
Bolt Size Dimensions mm/in
No.-Size mm 0 L H
25
1”
33.7
1.327
500
3.45
2-M10x45 60
2.362
102
4.016
45
1.772
32
1 1/4”
42.4
1.669
500
3.45
2-M10x45 70
2.756
106
4.173
44
1.732
40

1 1/2”

48.3
1.900
500
3.45
2-M10x45 73
2.874
108
4.252
44
1.732
50
2”
60.3
2.375
500
3.45
2-M10x55 87
3.425
123
4.843
44
1.732
65

2 1/2”

73.0
2.875
500
3.45
2-M10x55 100
3.937
138
5.433
44
1.732
65
2 1/2”
76.1
3.000
500
3.45
2-M10x55 103
4.055
142
5.591
45
1.772
80
3”
88.9
3.500
500
3.45
2-M12x60 117
4.606
166
6.535
45
1.772
100
4”
114.3
4.500
500
3.45
2-M12x65 139
5.472
190
7.480
49
1.929
125
5”
139.7
5.500
400
2.75
2-M12x75 168
6.614
218
8.583
49
1.929
150
6”
165.1
6.500
400
2.75
2-M12x75 193
7.598
241
9.488
49
1.929
150
6”
168.3
6.625
400
2.75
2-M12x75 198.5
7.815
249
9.803
50
1.969
200
8”
219.1
8.625
300
2.07
2-M16x85 253
9.961
320
12.598
59
2.323
  250
  10”
273
10.748
300
2.07
2-M22x130 335
13.189
426
16.772
68
2.677
  300
  12”
323.9
12.752
300
2.07
2-M22x130 380
14.96
470
18.504
65
2.559

Grooved fittings are a new type of steel pipe connection fittings, also called clamp connections, which have many advantages. The design specification for automatic sprinkler system proposes that the connection of system pipes should adopt grooved connectors or threaded, flanged connections; pipes with a diameter equal to or greater than 100mm in the system should use flanges or grooved connectors in sections connect.

Grooved fittings include 2 broad categories of products:The pipe fittings that play the role of connection and sealing include rigid joints, flexible joints, mechanical tees and grooved flanges; The pipe fittings that play the role of connection transition include elbows, tees, crosses, reducers, blind plates, etc.

The grooved connection pipe fittings used for connection and sealing are mainly composed of 3 parts: sealing rubber ring, clamp and locking bolt. The rubber sealing ring on the inner layer is placed on the outside of the pipe to be connected, and matches the pre-rolled groove, then buckle the clamp on the outside of the rubber ring, and then fasten it with 2 bolts. Due to the unique sealable structural design of the rubber sealing ring and the hoop, the grooved joint has good sealing performance, and the sealing performance is enhanced correspondingly with the increase of the fluid pressure in the pipe.
Quality Control:

Advanced equipment guarantee the production of high quality products.
Advantages of DISA moulding line:1. High quality precise casting less scrap and lower finishing costs. 2.High Production Efficiency(1)Fast production: 350 moulds per hour, pattern changing time cut down to 2-3 minutes
(2).higher profitability over a longer service life. 3. Safety and Environmental Friendly safe, easy and clean operation (CE and ISO 14001 compliant)
High-precision, hydraulicly driven mould transport,no shifting, distortion, ordisplacement of moulds.
The advantage of the sand supply system:The sand supply system is from the best class sand processing equipment manufacturers of China, with straight structure, easier maintenance, environmently friendly, high degree of automation, high safety factor, good parameters of sand stability.

Fluid Tech is honored as the National enterprise technical center and is capable and qualified to conduct full series of tests and inspections including chemical checking, etc. Inspection facilities include:spectrometer, carbon sulfur analyzer, metallurgical microscope, tensile strength testing equipment, pressure testing equipment, adhesive force testing equipment, CMM, hardness tester, etc.From incoming inspection to finished product, quality is checked a
nd monitored in the whole process. Each step of the manufacturing process is carefully documented, regularly reviewed for revision control and updatin
g standard. Quality procedures are constantly monitored and updated to assure that only the highestand most consistent quality products are supplied to our valued customers.

FAQ

1. What is the minimum quantity of the order? 
Answer: The purchase volume of mixed products is 4 tons

2. How long is the delivery time of the order?
Answer: The delivery time for general orders is about 30 days. If the order is urgent and we have stock, around 7 days.

3. What payment methods do you accept?
Answer: We accept payment terms such as TT, L/C, DP, Western Union, Paypal, etc.

4. Where is your departure port of shipment? Is it possible to deliver to the designated warehouse?
Answer: The port of departure of our goods is generally ZheJiang Port or HangZhou Port. We can transport the goods to designated warehouses, such as HangZhou, HangZhou, etc.

5. What certificates do your products have?
Answer: Our products have FM/UL certificates, and we cooperate with third-party quality inspection certification before the factory, such as SGS,TUV

6.What are the series of your products?
Answer: Our products are divided into heavy series, medium series and light series according to different markets and standards. In order to buy more competitive products for you, please communicate your purchasing needs with the salesperson.

7. Do product packaging cartons and labels support customization?
Answer: Packaging cartons and labels can be customized according to customer requirements.

8.Does the purchased product support customization?
Answer: The product supports customization, but there are purchase quantity requirements and mold costs. For details, please consult the salesperson.

9.What are the packaging methods of the product?
Answer: The packaging of the product includes carton packaging, pallet packaging, wooden box packaging, and woven bag packaging.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

How Do Rigid Couplings Compare to Other Types of Couplings in Terms of Performance?

Rigid couplings offer specific advantages and disadvantages compared to other types of couplings, and their performance depends on the requirements of the application:

1. Performance: Rigid couplings provide excellent torque transmission capabilities and are best suited for applications that demand precise and efficient power transfer. They have minimal backlash and high torsional stiffness, resulting in accurate motion control.

2. Misalignment Tolerance: Rigid couplings cannot tolerate misalignment between shafts. They require precise shaft alignment during installation, which can be time-consuming and may result in increased downtime during maintenance or repairs.

3. Vibration Damping: Rigid couplings offer no damping of vibrations, which means they may not be suitable for systems that require vibration isolation or shock absorption.

4. Maintenance: Rigid couplings are generally low maintenance since they have no moving parts or flexible elements that can wear out over time. Once properly installed, they can provide reliable performance for extended periods.

5. Space Requirements: Rigid couplings are compact and do not add much length to the shaft, making them suitable for applications with limited space.

6. Cost: Rigid couplings are usually more economical compared to some advanced and specialized coupling types. Their simpler design and lower manufacturing costs contribute to their affordability.

7. Application: Rigid couplings are commonly used in applications where shafts are precisely aligned and no misalignment compensation is necessary. They are prevalent in precision machinery, robotics, and applications that require accurate motion control.

In contrast, flexible couplings, such as elastomeric, jaw, or beam couplings, are designed to accommodate misalignment, dampen vibrations, and provide some degree of shock absorption. Their performance is ideal for systems where shafts may experience misalignment due to thermal expansion, shaft deflection, or dynamic loads.

In summary, rigid couplings excel in applications that demand precise alignment and high torque transmission, but they may not be suitable for systems that require misalignment compensation or vibration damping.

rigid coupling

How Does a Rigid Coupling Handle Angular, Parallel, and Axial Misalignment?

Rigid couplings are designed to provide a fixed and rigid connection between two shafts. As such, they do not have any built-in flexibility to accommodate misalignment. Therefore, when using a rigid coupling, it is essential to ensure proper shaft alignment to avoid excessive forces and premature wear on connected equipment.

Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Rigid couplings cannot compensate for angular misalignment, and any angular misalignment should be minimized during installation. Precision alignment techniques, such as laser alignment tools, are often used to achieve accurate angular alignment.

Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the axes of the two shafts are parallel but have a lateral displacement from each other. Rigid couplings cannot accommodate parallel misalignment. Therefore, precise alignment is crucial to prevent binding and excessive forces on the shafts and bearings.

Axial Misalignment: Axial misalignment occurs when the two shafts have an axial (longitudinal) displacement from each other. Rigid couplings cannot address axial misalignment. To prevent thrust loads and additional stresses on bearings, it is essential to align the shafts axially during installation.

In summary, rigid couplings are unforgiving to misalignment and require precise alignment during installation. Any misalignment in a rigid coupling can lead to increased wear, premature failure of components, and reduced overall system efficiency. Therefore, it is crucial to use appropriate alignment techniques and tools to ensure optimal performance and longevity of the connected equipment.

rigid coupling

What is a Rigid Coupling and How Does it Work?

A rigid coupling is a type of mechanical coupling used to connect two shafts together at their ends to transmit torque and rotational motion without any flexibility or misalignment accommodation. Unlike flexible couplings, rigid couplings do not allow for angular, parallel, or axial misalignment between the shafts. The main purpose of a rigid coupling is to provide a strong and solid connection between two shafts, ensuring precise and synchronous power transmission between them.

Structure and Design:

Rigid couplings are typically made from durable materials such as steel, stainless steel, or aluminum, which can withstand high torque and load applications. The coupling consists of two halves, each with a cylindrical bore that fits tightly onto the respective shafts. The two halves are then fastened together using bolts or set screws to ensure a secure and rigid connection.

Working Principle:

The working principle of a rigid coupling is straightforward. When the two shafts are aligned precisely and the coupling is securely fastened, any torque applied to one shaft gets directly transferred to the other shaft. The rigid coupling essentially makes the two shafts act as one continuous shaft, allowing for synchronous rotation without any relative movement or play between them.

Applications:

Rigid couplings are commonly used in applications where precise alignment and torque transmission are essential. Some common applications of rigid couplings include:

  • High-precision machinery and equipment
  • Robotics and automation systems
  • Precision motion control systems
  • Machine tools
  • Shaft-driven pumps and compressors

Advantages:

The key advantages of using rigid couplings include:

  • High Torque Transmission: Rigid couplings can handle high torque and power transmission without any loss due to flexibility.
  • Precision: They provide accurate and synchronous rotation between the shafts, making them suitable for precise applications.
  • Simple Design: Rigid couplings have a simple design with minimal moving parts, making them easy to install and maintain.
  • Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective.

Limitations:

Despite their advantages, rigid couplings have certain limitations:

  • No Misalignment Compensation: Rigid couplings cannot accommodate any misalignment between the shafts, making precise alignment during installation crucial.
  • Transmits Vibrations: Since rigid couplings do not dampen vibrations, they can transmit vibrations and shocks from one shaft to the other.
  • Stress Concentration: In some applications, rigid couplings can create stress concentration at the ends of the shafts.

In summary, rigid couplings are ideal for applications that require precise alignment and high torque transmission. They offer a robust and straightforward solution for connecting shafts and ensuring synchronous power transmission without any flexibility or misalignment accommodation.

China best Grooved Rigid Coupling Used in Fire Protection FM / UL Listed Epoxy Painting  China best Grooved Rigid Coupling Used in Fire Protection FM / UL Listed Epoxy Painting
editor by CX 2024-05-08


Posted

in

by

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *